

Markscheme

May 2018

Physics

Higher level

Paper 3

30 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Question		Answers	Notes	Total
1.	а		distance fallen = $654 - 12 = 642$ «mm» \checkmark absolute uncertainty = $2 + 0.1$ «mm» $\approx 2 \times 10^{-3}$ «m» or = 2.1×10^{-3} «m» or = 2.0×10^{-3} «m» \checkmark	Accept answers in mm or m	2
1.	b		$\text{(a)} = \frac{2s}{t^2} = \frac{2 \times 0.642}{0.363^2} \text{(b)} = 9.744 \text{(c)} \text{(c)} \text{(c)}$ $\text{(fractional uncertainty in distance} = \frac{2}{642} \text{(c)} \text{(d)} \text{(fractional uncertainty in time} = \frac{0.002}{0.363} \text{(d)}$ $\text{(d)} \text{(d)} \text$	Accept working in % for MP2 and MP3 Final uncertainty must be the	4
			and uncertainty, <i>ie</i> : 9.7±0.1 <i>or</i> 9.74±0.14 ✓	absolute uncertainty	

Q	uestic	on	Answers	Notes	Total
2.	а		combines the two equations to obtain result wfor example $\frac{1}{I} = K^2 (C + x)^2 = \frac{4\pi}{P} (C + x)^2$ > \checkmark	There are many ways to answer the question, look for a combination of two equations to obtain the third one	
			reverse engineered solution – substitute $K = 2\sqrt{\frac{\pi}{P}}$ into $\frac{1}{I} = K^2(C + x)^2$ to get $I = \frac{P}{4\pi(C + x)^2} \checkmark$		1
2.	b	i	extrapolating line to cross x -axis / use of x -intercept OR Use $C = \frac{y\text{-intercept}}{\text{gradient}}$ OR use of gradient and one point, correctly substituted in one of the formulae \checkmark accept answers between 3.0 and 4.5 «cm» \checkmark	Award [1 max] for negative answers	2

(Question 2 continued)

C	Questi	on	Answers	Notes	Total
2.	b	ii	ALTERNATIVE 1		
			Evidence of finding gradient using two points on the line at least 10 cm apart ✓	For 3rd marking point if no unit given, assume answer is in W	
			Gradient found in range: 115–135 <i>or</i> 1.15–1.35 ✓		
				Award [3 max] for an answer between 6.9W and 9.5W (POT penalized in 3rd marking point)	
				Alternative 2 is worth [3 max]	
			Using $P = \frac{4\pi}{K^2}$ to get value between 6.9×10^{-4} and 9.5×10^{-4} «W»		
			and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓		4
			ALTERNATIVE 2		
			Finds $I\left(\frac{1}{y^2}\right)$ from use of one point (x and y) on the line with		
			$x > 6$ cm and C from (b)(i) to use in $I = \frac{P}{4\pi(C+x)^2}$ or		
			$\frac{1}{\sqrt{I}} = Kx + KC \checkmark$		
			Correct re-arrangement to get <i>P</i> between 6.9×10 ⁻⁴ and		
			9.5×10 ⁻⁴ «W» and POT correct ✓		
			Correct unit, W and answer to 1, 2 or 3 significant figures ✓		

(Question 2 continued)

C	uestion	Answers	Notes	Total
2.	С	this graph will be a curve / not be a straight line ✓	OWTTE	
		more difficult to determine value of K		
		OR		2
		more difficult to determine value of C		
		OR		
		suitable mathematical argument ✓		

Section B

Option A — Relativity

Q	uestic	on	Answers	Notes	Total
3.	а	i	1.25c ✓		1
3.	а	ii	ALTERNATIVE 1		
			$u' = \frac{(0.50 + 0.75)}{1 + 0.5 \times 0.75} c \checkmark$		
			0.91 <i>c</i> ✓		
			ALTERNATIVE 2		2
			$u' = \frac{-0.50 - 0.75}{1 - (-0.5 \times 0.75)}c \checkmark$		
			-0.91 <i>c</i> ✓		
3.	b		nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer) ✓	OWTTE	1

C	Question	Answers	Notes	Total
4.	а	0.60 <i>c</i> OR 1.8×10 ⁸ «m s ⁻¹ » ✓		1
4.	b	time interval in the Earth frame = $90 \times \gamma = 112.5$ minutes \checkmark «in Earth frame it takes 112.5 minutes for ship to reach station» so distance = $112.5 \times 60 \times 0.60c$ \checkmark 1.2×10^{12} «m» \checkmark ALTERNATIVE 2 Distance travelled according in the spaceship frame = $90 \times 60 \times 0.6c$ \checkmark = 9.72×10^{11} «m» \checkmark Distance in the Earth frame $\checkmark = 9.72 \times 10^{11} \times 1.25$ » = 1.2×10^{12} «m» \checkmark		3

(Question 4 continued)

C	Question		Answers	Notes	Total
4.	С		signal will take $\ll 112.5 \times 0.60 = \% 67.5 \ll minutes \%$ to reach Earth $\ll 3 \approx 3 $		2
4.	d	i	line from event E to A, upward and to left with A on <i>ct</i> axis (approx correct) ✓ line from event A to B, upward and to right with B on <i>ct'</i> axis (approx correct) ✓ both lines drawn with ruler at 45 (judge by eye) ✓	eg: A Earth 0 space station space station	3

(Question 4 continued)

(uesti	on	Answers	Notes	Total
4.	d	ii	ALTERNATIVE 1 «In spaceship frame» Finds the ratio $\frac{OB}{OE}$ (or by similar triangles on x or ct axes), value is approximately $4 \checkmark$ hence time elapsed $\approx 4 \times 90 \text{mins} \approx 6 \text{h}$ «so clock time is $\approx 6:00 \text{ w} \checkmark$	Allow similar triangles using x-axis or ct-axis, such as distance 2 from diagrams below	2

(Question 4 continued)

C	uesti	on	Answers	Notes	Total
5.	а		quantity that is the same/constant in all inertial frames ✓		1
5.	b	i	spacetime interval = 27 ² −15 ² = 504 «m ² » ✓		1
5.	b	ii	ALTERNATIVE 1 Evidence of $x' = 0$ \checkmark $t' \ll \frac{\sqrt{504}}{c} \gg = 7.5 \times 10^{-8} \ll s \gg \checkmark$ ALTERNATIVE 2 $\gamma = 1.2 \checkmark$ $t' \ll \frac{9 \times 10^{-8}}{1.2} \gg = 7.5 \times 10^{-8} \ll s \gg \checkmark$		2
5.	С		observer B measures the proper time and this is the shortest time measured OR time dilation occurs «for B's journey» according to A OR observer B is stationary relative to the particle, observer A is not ✓		1

Q	uesti	on	Answers	Notes	Total
6.	а		$\gamma \ll = \frac{3350}{938} \approx 3.57 \checkmark$		1
6.	b	i	energy of pion = $(3350 \times 2) - 6200 = 500$ «MeV» \checkmark $500^2 = p^2c^2 + 140^2 \checkmark$ $p = 480$ «MeV c^{-1} » \checkmark		3
6.	b	ii	path of pion constructed in direction around 4–5 o'clock by eye ✓	eg: neutron incident proton created proton	1

C	Question		Answers Notes		Total
7.	а	i	boundary inside which events cannot be communicated to an outside observer OR distance/surface at which escape velocity = $c \checkmark$	OWTTE	1
7.	а	ii	mass of black hole = 7.2×10^{36} «kg» \checkmark $ \frac{2GM}{c^2} = \text{w } 1 \times 10^{10} \text{ «m» } \checkmark $		2
7.	b		wherever S-2 is in orbit, time observed is longer than 5.0 s ✓ when closest to the star S-2 periodic time dilated more than when at greatest distance ✓ Justification using formula or time is more dilated in stronger gravitational fields ✓		2 max

Option B — Engineering physics

Q	uestic	on	Answers	Notes	Total
8.	а	i	an object's resistance to change in rotational motion OR equivalent of mass in rotational equations ✓	OWTTE	1
8.	а	ii	Δ KE + Δ rotational KE = Δ GPE OR $\frac{1}{2}mv^2 + \frac{1}{2}I\frac{v^2}{r^2} = mgh$ ✓ $\frac{1}{2} \times 0.250 \times v^2 + \frac{1}{2} \times 1.3 \times 10^{-4} \times \frac{v^2}{1.44 \times 10^{-4}} = 0.250 \times 9.81 \times 0.36$ ✓ $v = 1.2 \text{ wm s}^{-1}$ » ✓		3
8.	а	iii	$\omega = \frac{1.2}{0.012}$ = 100 «rad s ⁻¹ » \checkmark		1
8.	b	i	force in direction of motion ✓ so linear speed increases ✓		2
8.	b	ii	force gives rise to anticlockwise/opposing torque on wheel ✓ so angular speed decreases ✓	OWTTE	2

C	uestion	Answers	Notes	Total
9.	а	ALTERNATIVE 1 «Using $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ » $V_2 = \frac{47.1 \times (273 + 19)}{(273 - 12)} \checkmark$ $V_2 = 52.7 \text{ cm}^3 \text{ w} \checkmark$ ALTERNATIVE 2 «Using $PV = nRT$ » $V = \frac{243 \times 8.31 \times (273 + 19)}{11.2 \times 10^3} \checkmark$ $V = 52.6 \text{ cm}^3 \text{ w} \checkmark$		2
9.	b	$W \ll P\Delta V = 11.2 \times 10^3 \times (52.7 - 47.1) \checkmark$ $W = 62.7 \times 10^3 \ll J \checkmark$	Accept 66.1×10^3 J if 53 used Accept 61.6×10^3 J if 52.6 used	2
9.	С	$\Delta U = \frac{3}{2} nR \Delta T = 1.5 \times 243 \times 8.31 \times (19 - (-12)) = 9.39 \times 10^4 \checkmark$ $Q = \Delta U + W = 9.39 \times 10^4 + 6.27 \times 10^4 \checkmark$ $Q = 1.57 \times 10^5 \text{ «J» } \checkmark$	Accept 1.60×10^5 if 66.1×10^3 J used Accept 1.55×10^5 if 61.6×10^3 J used	3

(Question 9 continued)

C	uesti	on	Answers	Notes	Total
9.	d	i	concave curve from RHS of present line to point above LHS of present line ✓ vertical line from previous curve to the beginning ✓	eg: p 0 0 V	2
9.	d	ii	energy is removed from the gas and so entropy decreases OR temperature decreases «at constant volume (less disorder)» so entropy decreases ✓	OWTTE	1
9.	е		different paradigms/ways of thinking/modelling/views ✓ allows testing in different ways ✓ laws can be applied different situations ✓	OWTTE	1 max

Q	Question		Answers	Notes	Total
10.	а		$\frac{1}{2}\rho v_{X}^{2} = p_{Y} - p_{X} = \rho g \Delta h \checkmark$ $v_{X} = \sqrt{2 \times 9.8 \times (0.32 - 0.10)} \checkmark$ $v_{X} = 2.08 \text{ cms}^{-1} \text{ w} \checkmark$		3
10.	b	i	$R = \frac{\text{vr}\rho}{\eta} = \frac{2.1 \times 0.25 \times 10^3}{8.9 \times 10^{-4}} \text{ s} 5.9 \times 10^5 \checkmark$		1
10.	b	ii	($R > 1000$) flow is not laminar, so assumption is invalid \checkmark	OWTTE	1

Q	uestion	Answers	Notes	Total
11.	а	general shape as shown ✓ peak at 6 kHz ✓ graph does not touch the f axis ✓	amplitude 0 2 4 6 8 10 12 14 16 18 20 frequency / kHz	3
11.	b	peak broadens ✓ reduced maximum amplitude / graph shifted down ✓ resonant frequency decreases / graph shifted to the left ✓		2 max

Option C — Imaging

Q	uesti	on	Answers	Notes	Total
12.	а	i	constructs ray parallel to principal axis and then to image position OR u=8cm and v=24cm and lens formula ✓	eg: 2.0 cm converging lens Allow answers in the range of 5.6 to 6.4 cm	2
12. 12.	a b	ii	m=«-»3.0 ✓ completes diagram with blue focal point closer to lens ✓	First marking point can be explained in words or seen on diagram	1
			blue light/rays refracted/deviated more OR speed of blue light is less than speed of red light ✓ OR different colors/wavelengths have different focal points/converge at different points ✓	red light ray principal axis blue light ray converging glass lens	2

Q	uestion	Answers	Notes	Total
13.	a	where the extensions of the reflected rays from the primary mirror would meet, with construction lines ✓	eg: primary mirror secondarly mirror reflecting telescope	1
13.	b	greater magnification ✓		1
13.	С	«use of $\frac{1.22\lambda}{d}$ to get» resolution of 6.7×10^{-9} «rad» ✓ $\frac{5.8 \times 10^{-7}}{6.7 \times 10^{-9}} = 87 \text{ m} \text{ m} \text{ for } 4.7 \times 10^{-9} \text{ mode}$ some reference to difficulty in making optical mirrors/lenses of this size ✓	Allow $\frac{5.8 \times 10^{-7}}{5.5 \times 10^{-9}} = 105 \text{ m w}$	3

Q	uesti	on	Answers	Notes	Total
14.	а		$\sin c = \frac{1.4444}{1.4475}$ or $\sin c = 0.9978$ \checkmark critical angle = 86.2 «°» \checkmark with cladding only rays travelling nearly parallel to fibre axis are transmitted OR pulse broadening/dispersion will be reduced \checkmark	OWTTE	3
14.	b	i	attenuation = $\ll 10 \log \frac{I}{I_0}$ w = $10 \log \frac{2.0 \times 10^{-6}}{400 \times 10^{-6}}$ \checkmark attenuation = $\ll \approx 23 \ll B$ ≈ 4	Accept $10 \log \frac{400}{2.0}$ for first marking point	2
14.	b	ii	185 × 0.200 = 37 loss over length of cable ✓ $ \frac{37 - 23}{12} = 1.17 \text{ so two amplifiers are sufficient } \checkmark $		2
14.	b	iii	mention of material dispersion ✓ mention that rays become separated in time OR mention that ray A travels slower/arrives later than ray B ✓		2

(Question 14 continued)

Q	uestion	Answers	Notes	Total
14.	С	high bandwidth/data transfer rates ✓ low distortion/Low noise/Faithful reproduction ✓ high security ✓ fast «fibre» broadband/internet ✓ high quality optical audio ✓ medical endoscopy ✓	Allow any other verifiable sensible advantage	1 max
15.	а	many/array of transducers send ultrasound through body/object ✓ B scan made from many A scans in different directions ✓ the reflection from organ boundaries gives rise to position ✓ the amplitude/size gives brightness to the B scan ✓ 2D/3D image formed «by computer» ✓		3 max

(Question 15 continued)

C	uesti	ion	Answers	Notes	Total
15.	b	i	the thickness of tissue that reduces the intensity «of the X-rays» by a half OR $x_{\frac{1}{2}} = \frac{\ln 2}{\mu} \text{ where } x_{\frac{1}{2}} \text{ is the half value thickness and } \mu \text{ is attenuation coefficient } \checkmark$	Symbols must be defined for mark to be awarded	1
15.	b	ii	after fat layer, $I_{\rm fat}=I_0{\it e}^{-0.4499\times5.00}$ \checkmark after muscle layer, $I=I_{\rm fat}{\it e}^{-0.8490\times4.00}$ \checkmark $I=0.003533I_0$ or 0.35% \checkmark		3
15.	b	iii	<pre>whigh energies factors:» less attenuation/more penetration ✓ more damage to the body ✓ «so» stronger signal leaves the body OR «so» used in «most» medical imaging techniques ✓ «low energy factors:» must be used with enhancement techniques ✓ greater attenuation/less penetration ✓ «so» more damage to the body «on surface layers» OR «so» unwanted in «most» medical imaging techniques ✓</pre>		3 max

Option D — Astrophysics

Q	Question		Answers	Notes	Total
16.	а		photon/fusion/radiation force/pressure balances gravitational force/pressure ✓ gives both directions correctly (outwards radiation, inwards gravity) ✓	OWTTE	2
16.	b		« $L ∞ M^{3.5}$ for main sequence» luminosity of $P = 2.5$ «luminosity of the Sun» ✓		1
16.	С	i	$L_{Gacrux} = 5.67 \times 10^{-8} \times 4\pi \times (58.5 \times 10^{9})^{2} \times 3600^{4} \checkmark$ $L_{Gacrux} = 4.1 \times 10^{29} \text{ «W » } \checkmark$ $\frac{L_{Gacrux}}{L_{\odot}} = \frac{4.1 \times 10^{29}}{3.85 \times 10^{26}} = 1.1 \times 10^{3} \checkmark$		3
16.	С	ii	if the star is too far then the parallax angle is too small to be measured <i>OR</i> stellar parallax is limited to closer stars ✓	OWTTE	1

(Question 16 continued)

C	Question		Answers	Notes	Total
16.	d	i	line or area roughly inside shape shown – judge by eye ✓	Accept straight line or straight area at roughly 45°	1
16.	d	ii	P between $1L_{\odot}$ and $10^{1}L_{\odot}$ on main sequence drawn \checkmark		1

(Question 16 continued)

(Question 16 continued)

Q	uestion	Answers	Notes	Total
16.	е	ALTERNATIVE 1	OWTTE for both alternatives	
		Main sequence to red giant ✓		
		planetary nebula with mass reduction/loss		
		OR		
		planetary nebula with mention of remnant mass ✓		
		white dwarf ✓		
		ALTERNATIVE 2		
		Main sequence to red supergiant region ✓		3
		Supernova with mass reduction/loss		
		OR		
		Supernova with mention of remnant mass ✓		
		neutron star		
		OR		
		Black hole ✓		

Question		Answers	Notes	Total
17.	а	use of gradient or any coordinate pair to find $H_0 \ll \frac{v}{d}$ or $\frac{1}{H_0} \ll \frac{d}{v}$ \checkmark convert Mpc to m and km to m «for example $\frac{82 \times 10^3}{10^6 \times 3.26 \times 9.46 \times 10^{15}}$ » \checkmark age of universe $\ll \frac{1}{H_0}$ » = 3.8×10^{17} «s» \checkmark	Allow final answers between 3.7 × 10 ¹⁷ and 3.9 × 10 ¹⁷ «s» or 4 × 10 ¹⁷ «s»	3
17.	b	non-accelerated/uniform rate of expansion OR H₀ constant over time ✓	OWTTE	1
17.	С	$z \ll \frac{V}{c} = \frac{4.6 \times 10^{4} \times 10^{3}}{3.00 \times 10^{8}} = 0.15 \checkmark$ $\frac{R}{R_{0}} = \&z + 1 = 1.15 \checkmark$ $\frac{R_{0}}{R} = &\frac{1}{1.15} = 0.87$ OR $87 \% \text{ of the present size } \checkmark$		3

C	uestion	Answers	Notes	Total
18.		«For a star to form»: magnitude of PE of gas cloud > KE of gas cloud OR Mass of cloud > Jean's mass OR Jean's criterion is the critical mass ✓ hence a hot diffuse cloud could have KE which is too large/PE too small OR hence a cold dense cloud will have low KE/high PE OR a cold dense cloud is more likely to exceed Jeans mass OR a hot diffuse cloud is less likely to exceed the Jeans mass ✓	Accept $E_p + E_k < 0$	2
18.	b	Neutron capture creates heavier isotopes / heavier nuclei / more unstable nucleus ✓ β- decay of heavy elements/iron increases atomic number «by 1» ✓	OWTTE	2

C	uestion	Answers	Notes	Total
19.	а	«rotational» velocity of stars are expected to decrease as distance from centre of galaxy increases ✓ the observed velocity of outer stars is constant/greater than predicted ✓ implying large mass on the edge «which is dark matter» ✓	OWTTE 1st and 2nd marking points can be awarded from an annotated sketch with similar shape as the one below Observed Expected R	3
19.	b	data from type 1a supernovae shows universe expanding at an accelerated rate ✓ gravity was expected to slow down the expansion of the universe OR this did not fit the hypotheses at that time ✓ dark energy counteracts/opposes gravity OR dark energy causes the acceleration ✓	OWTTE	3