Markscheme

May 2018

Physics

Higher level

Paper 3

30 pages

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
2.	a		combines the two equations to obtain result «for example $\frac{1}{I}=K^{2}(C+x)^{2}=\frac{4 \pi}{P}(C+x)^{2}$ » $O R$ reverse engineered solution - substitute $K=2 \sqrt{\frac{\pi}{P}}$ into $\frac{1}{I}=K^{2}(C+x)^{2}$ to get $I=\frac{P}{4 \pi(C+x)^{2}}$	There are many ways to answer the question, look for a combination of two equations to obtain the third one	1
2.	b	i	extrapolating line to cross x-axis / use of x-intercept OR Use C $=\frac{y \text {-intercept }}{\text { gradient }}$ OR use of gradient and one point, correctly substituted in one of the formulae \checkmark accept answers between 3.0 and 4.5 «cm»	Award [1 max] for negative answers	2

(continued...)
(Question 2 continued)

Question			Answers	Notes	Total
2.	b	ii	ALTERNATIVE 1 Evidence of finding gradient using two points on the line at least 10 cm apart \checkmark Gradient found in range: 115-135 or 1.15-1.35 \checkmark Using $P=\frac{4 \pi}{K^{2}}$ to get value between 6.9×10^{-4} and $9.5 \times 10^{-4} « W$ » and POT correct \checkmark Correct unit, W and answer to 1,2 or 3 significant figures ALTERNATIVE 2 Finds $I\left(\frac{1}{y^{2}}\right)$ from use of one point (x and y) on the line with $x>6 \mathrm{~cm}$ and C from (b)(i) to use in $I=\frac{P}{4 \pi(C+x)^{2}}$ or $\frac{1}{\sqrt{I}}=K x+K C$ Correct re-arrangement to get P between 6.9×10^{-4} and 9.5×10^{-4} «W» and POT correct Correct unit, W and answer to 1,2 or 3 significant figures \checkmark	For 3rd marking point if no unit given, assume answer is in W Award [3 max] for an answer between 6.9W and 9.5W (POT penalized in 3rd marking point) Alternative 2 is worth [3 max]	4

(Question 2 continued)

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 2. | c | this graph will be a curve / not be a straight line \checkmark
 more difficult to determine value of K
 OR
 more difficult to determine value of C
 OR
 suitable mathematical argument \checkmark | OWTTE | |

Section B

Option A - Relativity

Question			Answers	Notes	Total
3.	a	i	1.25c \checkmark		1
3.	a	ii	ALTERNATIVE 1 $\begin{aligned} & u^{\prime}=\frac{(0.50+0.75)}{1+0.5 \times 0.75} c \\ & 0.91 c \checkmark \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & u^{\prime}=\frac{-0.50-0.75}{1-(-0.5 \times 0.75)} c \\ & -0.91 c \checkmark \end{aligned}$		2
3.	b		nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer)	OWTTE	1

Question		Answers	Notes	Total
4.	a	$0.60 c$ OR $1.8 \times 10^{8}\left\langle\mathrm{~m} \mathrm{~s}^{-1} »\right.$		1
4.	b	ALTERNATIVE 1 time interval in the Earth frame $=90 \times \gamma=112.5$ minutes \checkmark «in Earth frame it takes 112.5 minutes for ship to reach station» so distance $=112.5 \times 60 \times 0.60 \mathrm{c}$ $1.2 \times 10^{12} \text { «m» }$ ALTERNATIVE 2 Distance travelled according in the spaceship frame $=90 \times 60 \times 0.6 c$ $=9.72 \times 10^{11} \text { «m» }$ Distance in the Earth frame «= $9.72 \times 10^{11} \times 1.25 »=1.2 \times 10^{12}$ «m»		3

(continued...)
(Question 4 continued)

Question			Answers		Notes	Total
4.	c		signal will take $<112.5 \times 0.60 \Rightarrow$ » 67.5 «minutes» to reach Earth «as it travels at c » OR signal will take $\begin{aligned} & \frac{1.2 \times 10^{12}}{3 \times 10^{8}}=» 4000 \text { «s» } \checkmark ~\end{aligned}$ total time $«=67.5+112.5 »=180$ minutes or 3.00 h or $3: 00 \mathrm{am} \checkmark$			2
4.	d	i	line from event E to A, upward and to left with A on ct axis (approx correct) \checkmark line from event A to B, upward and to right with B on ct' axis (approx correct) both lines drawn with ruler at 45 (judge by eye) \checkmark			3

(continued...)
(Question 4 continued)

Question			Answers	Notes	Total
4.	d	ii	ALTERNATIVE 1 «In spaceship frame» Finds the ratio $\frac{O B}{O E}$ (or by similar triangles on x or ct axes), value is approximately $4 \checkmark$ hence time elapsed $\approx 4 \times 90 \mathrm{mins} \approx 6 \mathrm{~h}$ «so clock time is $\approx 6: 00 » \checkmark$	Alternative 1: Allow similar triangles using x-axis or ct-axis, such as distance 2 from diagrams below distance 1	2

(Question 4 continued)
Question

Question			Answers	Notes	Total
5.	a		quantity that is the same/constant in all inertial frames \checkmark		1
5.	b	i	spacetime interval $=27^{2}-15^{2}=504$ «m² \downarrow		1
5.	b	ii	ALTERNATIVE 1 Evidence of $x^{\prime}=0$ $t^{\prime} «=\frac{\sqrt{504}}{c} »=7.5 \times 10^{-8} « \mathrm{~s} » \downarrow$ ALTERNATIVE 2 $\begin{aligned} & \gamma=1.2 \checkmark \\ & t^{\prime} \text { «= } \frac{9 \times 10^{-8}}{1.2} »=7.5 \times 10^{-8} \text { «s» } \end{aligned}$		2
5.	c		observer B measures the proper time and this is the shortest time measured OR time dilation occurs «for B 's journey» according to A OR observer B is stationary relative to the particle, observer A is not \checkmark		1

Question			Answers	Notes	Total
6.	a		$\gamma «=\frac{3350}{938} »=3.57$		1
6.	b	i	$\begin{aligned} & \text { energy of pion }=(3350 \times 2)-6200=500 « \mathrm{MeV} » \checkmark \\ & 500^{2}=p^{2} c^{2}+140^{2} \checkmark \\ & p=480 « \mathrm{MeV} \mathrm{c}{ }^{-1} » \end{aligned}$		3
6.	b	ii	path of pion constructed in direction around 4-5 o'clock by eye	eg:	1

Question			Answers	Notes	Total
7.	a	i	boundary inside which events cannot be communicated to an outside observer OR distance/surface at which escape velocity $=c \quad \checkmark$	OWTTE	1
7.	a	ii	mass of black hole $=7.2 \times 10^{36}$ «kg» \checkmark $« \frac{2 G M}{c^{2}}=» 1 \times 10^{10} « \mathrm{~m} » \checkmark$		2
7.	b		wherever S-2 is in orbit, time observed is longer than 5.0 s when closest to the star S-2 periodic time dilated more than when at greatest distance \checkmark Justification using formula or time is more dilated in stronger gravitational fields \checkmark		2 max

Option B — Engineering physics

Question			Answers	Notes	Total
8.	a	i	an object's resistance to change in rotational motion OR equivalent of mass in rotational equations	OWTTE	1
8.	a	ii	$\Delta \mathrm{KE}+\Delta \text { rotational } \mathrm{KE}=\Delta \mathrm{GPE}$ OR $\begin{aligned} & \frac{1}{2} m v^{2}+\frac{1}{2} I \frac{v^{2}}{r^{2}}=m g h \checkmark \\ & \frac{1}{2} \times 0.250 \times v^{2}+\frac{1}{2} \times 1.3 \times 10^{-4} \times \frac{v^{2}}{1.44 \times 10^{-4}}=0.250 \times 9.81 \times 0.36 \\ & v=1.2<\mathrm{m} \mathrm{~s}^{-1} » \end{aligned}$		3
8.	a	iii	$\omega «=\frac{1.2}{0.012} »=100<\mathrm{rad} \mathrm{s}^{-1} » \checkmark$		1
8.	b	i	force in direction of motion \checkmark so linear speed increases		2
8.	b	ii	force gives rise to anticlockwise/opposing torque on wheel \checkmark so angular speed decreases	OWTTE	2

Question			Answers	Notes	Total
9.	a		ALTERNATIVE 1 $\begin{aligned} & \text { «Using } \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \text { " } \\ & V_{2}=\frac{47.1 \times(273+19)}{(273-12)} \\ & V_{2}=52.7 \text { « } \mathrm{m}^{3} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \text { «Using } P V=n R T \text { » } \\ & V=\frac{243 \times 8.31 \times(273+19)}{11.2 \times 10^{3}} \\ & V=52.6 \text { «m}{ }^{3} » \end{aligned}$		2
9.	b		$\begin{aligned} & W «=P \Delta V »=11.2 \times 10^{3} \times(52.7-47.1) \\ & W=62.7 \times 10^{3} « \mathrm{~J} » \end{aligned}$	Accept $66.1 \times 10^{3} \mathrm{~J}$ if 53 used Accept $61.6 \times 10^{3} \mathrm{~J}$ if 52.6 used	2
9.	c		$\Delta U «=\frac{3}{2} n R \Delta T »=1.5 \times 243 \times 8.31 \times(19-(-12))=9.39 \times 10^{4}$ $Q «=\Delta U+W »=9.39 \times 10^{4}+6.27 \times 10^{4} \checkmark$ $Q=1.57 \times 10^{5} « \mathrm{~J} » \checkmark$	Accept 1.60×10^{5} if $66.1 \times 10^{3} \mathrm{~J}$ used Accept 1.55×10^{5} if $61.6 \times 10^{3} \mathrm{~J}$ used	3

(continued...)
(Question 9 continued)

| Question | | Answers | Notal | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9. | d | i | concave curve from RHS of present line to point above LHS of
 present line \checkmark
 vertical line from previous curve to the beginning \checkmark | |
| 9. | d | ii | | |
| 9. | | | | |

Question		Answers	Total		
10.	a		$\frac{1}{2} \rho v_{X}^{2}=p_{Y}-p_{X}=\rho g \Delta h \checkmark$ $v_{X}=\sqrt{2 \times 9.8 \times(0.32-0.10)} \checkmark$ $v_{X}=2.08 \mu \mathrm{~ms}^{-1} » \checkmark$	Notes	
10.	b	i	$R=« \frac{v r \rho}{\eta}=\frac{2.1 \times 0.25 \times 10^{3}}{8.9 \times 10^{-4}} » 5.9 \times 10^{5} \checkmark$		
10.	b	ii	$(R>1000)$ flow is not laminar, so assumption is invalid \checkmark	OWTTE	

Option C - Imaging

Question			Answers	Notes	Total
12.	a	i	constructs ray parallel to principal axis and then to image position OR $u=8 \mathrm{~cm}$ and $\mathrm{v}=24 \mathrm{~cm}$ and lens formula	$e g:$ $2.0 \mathrm{~cm}$ Allow answers in the range of 5.6 to 6.4 cm	2
12.	a	ii	$m=$ «-»3.0 \downarrow		1
12.	b		completes diagram with blue focal point closer to lens \checkmark blue light/rays refracted/deviated more OR speed of blue light is less than speed of red light \checkmark OR different colors/wavelengths have different focal points/converge at different points \checkmark	First marking point can be explained in words or seen on diagram	2

Question		Answers	Notes	Total
13.	a	where the extensions of the reflected rays from the primary mirror would meet, with construction lines \checkmark	eg:	1
13.	b	greater magnification \checkmark		1
13.	c	«use of $\frac{1.22 \lambda}{d}$ to get» resolution of 6.7×10^{-9} «rad» \checkmark $\frac{5.8 \times 10^{-7}}{6.7 \times 10^{-9}}=87 « m » \downarrow$ some reference to difficulty in making optical mirrors/lenses of this size \checkmark	Allow $\frac{5.8 \times 10^{-7}}{5.5 \times 10^{-9}}=105$ «m »	3

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answers \& Notes \& Total

\hline 14. \& a \& \& | $\sin c=\frac{1.4444}{1.4475} \text { or } \sin c=0.9978$ |
| :--- |
| critical angle $=86.2$ «`» \checkmark |
| with cladding only rays travelling nearly parallel to fibre axis are transmitted |
| OR |
| pulse broadening/dispersion will be reduced | \& OWTTE \& 3

\hline 14. \& b \& i \& $$
\begin{aligned}
& \text { attenuation }=« 10 \log \frac{I}{I_{0}} »=10 \log \frac{2.0 \times 10^{-6}}{400 \times 10^{-6}} \\
& \text { attenuation }=«-» 23 « \mathrm{~dB} »
\end{aligned}
$$ \& Accept $10 \log \frac{400}{2.0}$ for first marking point \& 2

\hline 14. \& b \& ii \& | $185 \times 0.200=37$ loss over length of cable |
| :--- |
| « $\frac{37-23}{12}=1.17$ » so two amplifiers are sufficient | \& \& 2

\hline 14. \& b \& iii \& | mention of material dispersion mention that rays become separated in time |
| :--- |
| OR |
| mention that ray A travels slower/arrives later than ray B \checkmark | \& \& 2

\hline
\end{tabular}

(continued...)
(Question 14 continued)

| Question | | Answers | Notes |
| :---: | :--- | :--- | :--- | :--- |
| 14. | c | high bandwidth/data transfer rates \checkmark
 low distortion/Low noise/Faithful reproduction \checkmark
 high security \checkmark
 fast «fibre» broadband/internet \checkmark
 high quality optical audio \checkmark
 medical endoscopy \checkmark | Allow any other verifiable sensible advantage |

| 15. | a | many/array of transducers send ultrasound through body/object \checkmark
 B scan made from many A scans in different directions \checkmark
 the reflection from organ boundaries gives rise to position \checkmark
 the amplitude/size gives brightness to the B scan \checkmark
 $2 D / 3 D$ image formed «by computer» \checkmark | 3 max |
| :--- | :--- | :--- | :--- | :--- |

(continued...)
(Question 15 continued)

Question			Answers	Notes	Total
15.	b	i	the thickness of tissue that reduces the intensity «of the X -rays» by a half OR $x_{\frac{1}{2}}=\frac{\ln 2}{\mu}$ where $x_{\frac{1}{2}}$ is the half value thickness and μ is attenuation coefficient \checkmark	Symbols must be defined for mark to be awarded	1
15.	b	ii	after fat layer, $I_{\text {fat }}=I_{0} \mathrm{e}^{-0.4499 \times 5.00}$ after muscle layer, $I=I_{\text {fat }} e^{-0.8490 \times 4.00} \checkmark$ $I=0.003533 I_{0} \text { or } 0.35 \% \checkmark$		3
15.	b	iii	«high energies factors:» less attenuation/more penetration more damage to the body \checkmark «so» stronger signal leaves the body OR «so» used in «most» medical imaging techniques \checkmark «low energy factors:» must be used with enhancement techniques \checkmark greater attenuation/less penetration «so» more damage to the body «on surface layers» OR «so» unwanted in «most» medical imaging techniques \checkmark		3 max

Option D - Astrophysics

Question			Answers	Notes	Total
16.	a		photon/fusion/radiation force/pressure balances gravitational force/pressure gives both directions correctly (outwards radiation, inwards gravity) \checkmark	OWTTE	2
16.	b		$« L \propto M^{3.5}$ for main sequence» luminosity of $P=2.5$ «luminosity of the Sun» \checkmark		1
16.	c	i	$\begin{aligned} & L_{\text {Gacrux }}=5.67 \times 10^{-8} \times 4 \pi \times\left(58.5 \times 10^{9}\right)^{2} \times 3600^{4} \\ & L_{\text {Gacrux }}=4.1 \times 10^{29} « \mathrm{~W} » \checkmark \\ & \frac{L_{\text {Gacrux }}}{L_{\odot}} «=\frac{4.1 \times 10^{29}}{3.85 \times 10^{26}} »=1.1 \times 10^{3} \end{aligned}$		3
16.	C	ii	if the star is too far then the parallax angle is too small to be measured OR stellar parallax is limited to closer stars \checkmark	OWTTE	1

(continued...)
(Question 16 continued)

Question			Answers	Notes	Total
16.	d	i	line or area roughly inside shape shown - judge by eye \checkmark	Accept straight line or straight area at roughly 45°	
					1
16.	d	ii	P between $1 L_{\odot}$ and $10^{1} L_{\odot}$ on main sequence drawn \checkmark		1

(continued...)
(Question 16 continued)

(continued...)
(Question 16 continued)

Question		Answers	Notes	Total
16.	e	ALTERNATIVE 1 Main sequence to red giant planetary nebula with mass reduction/loss OR planetary nebula with mention of remnant mass white dwarf \checkmark ALTERNATIVE 2 Main sequence to red supergiant region \checkmark Supernova with mass reduction/loss OR Supernova with mention of remnant mass \checkmark neutron star OR Black hole \checkmark	OWTTE for both alternatives	3

Question		Answers	Notes	Total
17.	a	use of gradient or any coordinate pair to find $H_{0} «=\frac{v}{d} »$ or $\frac{1}{H_{0}} «=\frac{d}{v} » \checkmark$ convert Mpc to m and km to m «for example $\frac{82 \times 10^{3}}{10^{6} \times 3.26 \times 9.46 \times 10^{15}}$ » \checkmark age of universe «= $\frac{1}{H_{0}} »=3.8 \times 10^{17}$ «s»	Allow final answers between 3.7×10^{17} and 3.9×10^{17} «S» or 4×10^{17} «s»	3
17.	b	non-accelerated/uniform rate of expansion OR H_{0} constant over time \checkmark	OWTTE	1
17.	c	$\begin{aligned} & z «=\frac{v}{c} »=\frac{4.6 \times 10^{4} \times 10^{3}}{3.00 \times 10^{8}}=0.15 \\ & \frac{R}{R_{0}}=« z+1 »=1.15 \\ & \frac{R_{0}}{R}=« \frac{1}{1.15}=» 0.87 \end{aligned}$ OR 87% of the present size		3

Question		Answers	Notes		
18.	a	$\begin{array}{l}\text { «For a star to form»: magnitude of PE of gas cloud }>\text { KE of gas cloud } \\ \text { OR } \\ \text { Mass of cloud }>\text { Jean's mass } \\ \text { OR } \\ \text { Jean's criterion is the critical mass } \checkmark \\ \text { hence a hot diffuse cloud could have KE which is too large/PE too small } \\ \text { OR } \\ \text { hence a cold dense cloud will have low KE/high PE } \\ \text { OR } \\ \text { a cold dense cloud is more likely to exceed Jeans mass } \\ \text { OR } \\ \text { a hot diffuse cloud is less likely to exceed the Jeans mass } \checkmark\end{array}$	Accept $E_{p}+E_{k}<0$	$]$	2
:---					

Question			Answers	Notes	Total
19.	a		«rotational» velocity of stars are expected to decrease as distance from centre of galaxy increases the observed velocity of outer stars is constant/greater than predicted \checkmark implying large mass on the edge «which is dark matter» \checkmark	OWTTE 1st and 2nd marking points can be awarded from an annotated sketch with similar shape as the one below	3
19.	b		data from type 1a supernovae shows universe expanding at an accelerated rate gravity was expected to slow down the expansion of the universe OR this did not fit the hypotheses at that time \checkmark dark energy counteracts/opposes gravity OR dark energy causes the acceleration \checkmark	OWTTE	3

